Geology maps: where is that dolomite?

Apart from the two historic mining maps we have acquired, a substantial amount of our information has come from 1:250,000 maps of the bedrock geology. These provide the geological characteristics, and the location, of the underlying rocks in any area of South Africa. Because the types of caves we are looking for form in dolomite, locating areas where this rock is present is one of the main factors in determining our survey strategy.

The geology maps have been treated in the same way as the historic mining maps, utilising only the information relevant to the project and converting that information into a usable digital format. However, unlike the mining maps, on which the digital information is characterised by a point, the information we require from the geology maps relates to the region (including the size and shape) occupied by a lithological unit of bedrock.

Geology base map. An example section of a 1:250000 geological map showing areas of dolomite in different shades of blue (map published byDepartment of Mineral And Energy Affairs, Republic of South Africa 1981).


In order to convert this map information from Raster to Vector formats, we trace around the edges of the bedrock formations we are interested in, save them as a polygon (instead of a point), and then add the lithological information as an attribute of the feature. Not only does this kind of digitisation help in establishing areas to investigate but it also has a number of other advantages.

Geology map with polygons.  In this figure, the blue areas denoting a dolomitic lithological unit have been overlain by a traced polygon using ArcGIS and are now represented by different colours to indicate different attributes the rock unit might have, such as including interbedded chert, quartzite, or shale (map published byDepartment of Mineral And Energy Affairs, Republic of South Africa 1981).

The first advantage is the reduction in size of the file from a large scanned map which may be as much as 390 Megabytes per file to a few Kilobytes of data. This is helpful not only when trying to use the data on a handheld computer but also for storage on the device, since we can fit many more polygons than scanned maps on a 4 Gigabyte memory card. The second advantage of digitising in this way is that we can select the only data that are  relevant to the project and its aims. We can ignore all the other geological formations which do not hold the appropriate characteristics and only digitise those that we need. This again saves space on the memory cards but also saves time, both in the tracing of the geology and in locating regions appropriate to the project in the field.

Geology polygons. This figure shows how the digitisation of the geological formation looks when the area is loaded onto the handheld computers. The pink and orange colours represent the (dolomite) geology and the green background represents the Vector outline of the main provinces of South Africa.

The “Identify” function on the GIS software (ArcPad) we use on the hand-held computers can be used to call up the attributes of any of the Vector layers  once defined. The GPS function on the handheld also enables us to determine our current field position relative to the geological formations (polygons) and to the mines (points). This helps us to avoid spending a lot of time driving around searching in the field!

This is the final step in the digitisation process to prepare the maps for the field. The next blog in this series will deal with some of the hardware and software we are using in more detail.

– A Reid


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s